Electromagnetism-like Mechanism with Force Decay Rate Great Deluge for the Course Timetabling Problem

نویسندگان

  • Hamza Turabieh
  • Salwani Abdullah
  • Barry McCollum
چکیده

Combinations of population-based approaches with local search have provided very good results for a variety of scheduling problems. This paper describes the development of a population-based algorithm called Electromagnetism-like mechanism with force decay rate great deluge algorithm for university course timetabling. This problem is concerned with the assignment of lectures to a specific numbers of timeslots and rooms. For a solution to be feasible, a number of hard constraints must be satisfied. A penalty value which represents the degree to which various soft constraints are satisfied is measured which reflects the quality of the solution. This approach is tested over established datasets and compared against state-of-the-art techniques from the literature. The results obtained confirm that the approach is able to produce solutions to the course timetabling problem which demonstrate some of the lowest penalty values in the literature on these benchmark problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybridization of Electromagnetic-Like Mechanism and Great Deluge for Examination Timetabling Problems

In this paper, we present a hybridization of an electromagneticlike mechanism (EM) and the great deluge (GD) algorithm. This technique can be seen as a dynamic approach as an estimated quality of a new solution and a decay rate are calculated at every iteration during the search process. These values are depending on a force value calculated using the EM approach. It is observed that applying t...

متن کامل

A hybrid metaheuristic approach to the university course timetabling problem

This paper describes the development of a novel metaheuristic that combines an electromagnetic-like mechanism (EM) and the great deluge algorithm (GD) for the University course timetabling problem. This well-known timetabling problem assigns lectures to specific numbers of timeslots and rooms maximizing the overall quality of the timetable while taking various constraints into account. EM is a ...

متن کامل

An Evolutionary Non-Linear Great Deluge Approach for Solving Course Timetabling Problems

The aim of this paper is to extend our non-linear great deluge algorithm into an evolutionary approach by incorporating a population and a mutation operator to solve the university course timetabling problems. This approach might be seen as a variation of memetic algorithms. The popularity of evolutionary computation approaches has increased and become an important technique in solving complex ...

متن کامل

Evolutionary Non-linear Great Deluge for University Course Timetabling

This paper presents a hybrid evolutionary algorithm to tackle university course timetabling problems. The proposed approach is an extension of a non-linear great deluge algorithm in which evolutionary operators are incorporated. First, we generate a population of feasible solutions using a tailored process that incorporates heuristics for graph colouring and assignment problems. That initialisa...

متن کامل

Non-Linear Great Deluge with Reinforcement Learning for University Course Timetabling

This paper describes a non-linear great deluge hyper-heuristic incorporating a reinforcement learning mechanism for the selection of low-level heuristics and a non-linear great deluge acceptance criterion. The proposed hyper-heuristic deals with complete solutions, i.e. it is a solution improvement approach not a constructive one. Two types of reinforcement learning are investigated: learning w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009